
OPERATING SYSTEMS

Memory Management
Introduction
Fixed Partitioning
Variable Partitioning
Memory Hole/Allocation management
Problems

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Introduction

• Techniques to manage Main memory efficiently
• Provides multitasking facility
• Responsible for memory allocation, de-allocation and keep

track for each location
• Basic techniques:

• Fixed/Static Partitioning
• Variable/Dynamic Partitioning

2

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Fixed Partitioning

• Partition of main memory
into a set of non-overlapping
memory regions called
partitions

• Fixed partitions can be of
equal or unequal sizes

• Leftover space in partition
after program assignment is
called internal fragmentation

• Uses overlaying technique

3

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Types of Fixed Partitions

Equal-size partitions
• If there is an available partition, a process can be

loaded into that partition –
• because all partitions are of equal size, it does not matter

which partition is used.
• Doesn’t require any allocation policy
• Fast and easy
• Result internal fragmentation

4

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Types of Fixed Partitions

Unequal-size partitions
(Multiple queues)

• assign each process to the
smallest partition within
which it will fit.

• a queue exists for each
partition size.

• tries to minimize internal
fragmentation.

• Some queues might be
free while other might be
loaded

5

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Continued

Types of Fixed Partitions

Unequal-size partitions
(single queue)

• The smallest available
partition that will hold the
process is selected.

• increases the level of
multiprogramming at the
expense of internal
fragmentation.

6

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Continued

Problems in Fixed Partitioning

• Main memory use is inefficient.
• A program occupies an entire partition which can cause

internal fragmentation.
• Unequal-size partitions reduces the problem little bit
• Equal-size partitions was used in early IBM’s OS/MFT

(Multiprogramming with a Fixed number of Tasks).

7

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Continued

Variable Partitioning

• When a process arrives, it is allocated memory from a hole
large enough to accommodate it.

• Hole – block of available memory; holes of various sizes
are scattered throughout memory.

• Operating system maintains information about:
a) allocated partitions b) free partitions (holes)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

8

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Internal/External Fragmentation

There are really two types of fragmentation:
1. Internal Fragmentation

• Allocated memory may be slightly larger than
requested memory

• The size difference in memory internal to a partition,
but not being used.

1. External Fragmentation
• Memory space left between two or more allocated

processes
• External fragmentation exist in dynamic memory

divisions

9

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Reducing External Fragmentation
Compaction

• Shuffle memory contents to place all free memory
together in one large block (or possibly a few large
ones).

• Only if relocation is dynamic and is done at execution
time.

• Problem:
• Disturbs processes those are communicating with

I/O
• Addresses should be resolved after the compaction

10

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Memory Hole/Allocation Management
• It is required to keep track of used and unused memory spaces
• Techniques:

• Bit-map: It uses a table where 0 represent empty spaces & 1
represents used spaces.

• Linked List: Every node contains 4 fields, 1st to show Process (P) or
Memory-Hole (H), 2nd to show starting address of P/H, 3rd to present
length of P/H and 4th field contains address of next node

• Figure a shows the
used/unused memory
spaces

• Figure b shows
swapping management
using Bit-map

• Figure c shows
swapping management
using Linked List

11

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Placement Algorithms

• Methods for process allocation in fixed (unequal) and
dynamic memory management techniques:
• First-fit: It favors allocation near the beginning where a

process can accommodate.
• Next-fit: It works like first fit, but it starts searching of

memory-hole from last point it has used.
• Best-fit: It searches whole list & find the smallest memory-

hole where process can fit.

• Worst-fit: It searches whole list & fine the largest memory-
hole to allocate a process.

• Buddy System: dynamic memory allocation w.r.t requested
memory size

12

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Placement Algorithms

• Used to decide which free
block to allocate to a
process of 16MB.

• Goal: reduce usage of
compaction procedure (its
time consuming).

• Example algorithms:
• First-fit
• Next-fit
• Best-fit
• Worst-fit

13

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Continued

Buddy System Allocation

14

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Example of Buddy System

15

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Problems
Question # 1

Consider a swapping system in which memory consists of the following hole sizes
in memory order: 10K, 4K, 20K, 18K, 7K, 9K, 12K and 15K. Which hole is taken
for successive segment requests of (a) 12K, (b) 10K, (c) 9K for first fit? Repeat the
question for best fit, worst fit and next fit.

4K Block 1

7K Block 2

9K Block 3

10K Block 4

12K Block 5

15K Block 6

18K Block 7

20K Block 8

(a) 1st fit
12K, 10K and 9K will be allocated in Block # 5, 4, 3
respectively

(b) Best fit
12K, 10K and 9K will be allocated in Block # 5, 4, 3
respectively

(c) Worst fit
12K, 10K and 9K will be allocated in Block # 8, 7, 6
respectively

(d) Next fit
12K, 10K and 9K will be allocated in Block # 5, 6, 7
respectively

16

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Question # 2

A computer uses the buddy system for memory management. Initially it has one
block of 256K at address 0. After successive requests for 5K, 25K, 35K and 20K
come in, how many blocks are left and what are their sizes and addresses?

5K

29
K

 u
nu

se
d

8K 16K

25
K

7K
 u

nu
se

d

35
K

29
K

 u
nu

se
d

20
K

12
K

 u
nu

se
d

32K 64K

8K 32K 64K 32K

0 8 16 32 64 128 160 256 192

256

Problems

17

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Continued

Question # 3

Given memory partitions of 100K, 500K, 200K, 300K and 600K (in order), how
would each of the First-fit, Best-fit, and Worst-fit algorithms place processes of
212K, 417K, 112K and 624K (in order)? Which algorithm makes the most efficient
use of memory?
First fit
212K, 417K 112 and 624K will be allocated in Block # 2, 5, 3 and
5&1(last process will be allotted after completion of process 2 and it will
be allotted by using overlaying technique) respectively

Best fit
212K, 417K 112 and 624K will be allocated in Block # 4, 2, 3, and
5&1(last process will be allotted by using overlaying technique)
respectively

Worst fit
212K, 417K 112 and 624K will be allocated in Block # 5, 2, 4 and
5&2(last process will be allotted after completion of process 1 & 2 and it
will be allotted by using overlaying technique) respectively
According to this example, best fit technique is better than others.

100K Block 1

500K Block 2

200K Block 3

300K Block 4

600K Block 5

Problems

18

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Continued

Questions

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

OPERATING SYSTEMS

Simple/Basic Paging
Introduction
Paging mechanism
Translation Look-aside buffer
Sharing & Protection

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Simple/Basic Paging

• Divide physical memory into fixed-sized chunks/blocks
called frames.

• Divide logical memory into blocks of same size pages.
• The process pages can be assigned to any free frames

in main memory.
• Pages can be allocated in noncontiguous frames

2

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Simple/Basic Paging Requirements

• Need to keep track of all free frames.
• To run a program of size n pages, need to find

n free frames and load program.
• Need to set up a page table to translate logical to physical

pages/addresses.
• Internal fragmentation possible only for the last page
• No external fragmentation possible

3

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Page-Table & Free-Frame list

Before allocation After allocation4

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Logical address in paging

• The logical address becomes a relative
address.

• If16 bits addresses are used with page
size = 1K, then 10 bits for offset and 6
bits available for page number.

• Address translation from logical to
physical is done with help of page table

• page table helps to obtain the physical
address (frame number, offset).

5

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Address Translation Scheme
• Logical address generated by CPU is divided into two

parts:
• Page number (p) – used as an index into a page table which

contains the base address of each page in physical memory.
• Page offset/displacement (d) – combined with base address

to define the physical memory address
• By using a page size of a power of 2, the pages are

invisible to the programmer, compiler/assembler, and the
linker.

• Address translation at run-time is then easy to implement
in hardware

6

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Address Translation Architecture

7

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Logical-to-Physical Address Translation in Paging

8

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Paging Example

9

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Implementing Page Table

1. Keep Page Table in main memory:
• Page-table base register (PTBR) points to the page table.
• Page-table length register (PTLR) indicates size of the

page table.
• Every data/instruction access requires two memory

accesses
• one for the page table
• one for the data/instruction.

2. Keep Page Table in hardware (in MMU)
• Expensive if page table is large
• Faster but costly

10

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

3. Combination:
• Special fast-lookup hardware cache called

Associative Memory (Registers) or Translation Look-
aside Buffer (TLB)

• enables fast parallel search:

• Address translation (p, d)
• If p is in associative register, get frame #
• else., get frame # from page table in memory.

Page # Frame #

Implementing Page Table

11

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Continued

Paging Hardware With TLB

12

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Importance of TLB

• TLB takes advantage of the Locality Principle.
• Associative mapping hardware to simultaneously

interrogate all TLB entries to find a match/hit on page
number.

• TLB hit rates are 90+%.
• TLB must be flushed each time a new process enters

the running state.
• Requires to keep/load TLB information in/from process

context.

13

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Memory Protection

• Memory protection implemented by associating a
protection bit with each frame.

• Valid-invalid bit attached to each entry in the page table:
• “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page.
• “invalid” indicates that the page is not in the process’ logical

address space.

14

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Valid (v) or Invalid (i) Bit in a Page Table

15

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Shared Pages
• Shared code:

• One copy of read-only code shared among processes (i.e.,
text editors, compilers, window systems).

• Shared code must appear in same location in the logical
address space of all processes.

• Private code and data:
• Each process keeps separate copy of code and data.
• The pages for the private code and data can in the logical

address space.

16

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Shared Pages Example

17

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

Continued

Questions

Computer Systems Engineering Department, QUEST, Nawabshah 14CS

OPERATING SYSTEMS

Simple/Basic Segmentation
Introduction
Segmentation mechanism
Sharing & Protection
Comparison with paging

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

Simple/Basic Segmentation
• Paging division is arbitrary; no natural/logical boundaries

for protection/sharing.
• Segmentation supports user’s view of a program.
• A program is a collection of segments (logical units)
• A compiler has many tables that are built up as compilation

proceeds, possibly including:
• The source text (Code segment)
• The symbol table – the names and attributes of variables.
• The table containing integer, floating-point

constants used.
• The parse tree, the syntactic analysis of the program.
• The stack used for procedure calls within the compiler.

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

2

Segmentation allows each table to grow or shrink
independently of the other tables.

Segmentation Feature

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

3

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

4

Segmentation solution

In a one-dimensional address space with growing tables, one table
may bump into another.

Simple Segmentation properties

• Each program is subdivided into blocks of non-equal size called
segments.

• When a process gets loaded into main memory, its different
segments can be located anywhere.

• Each segment is fully packed with instructions/data; no internal
fragmentation.

• There is external fragmentation; it is reduced when using small
segments.

• In contrast with paging, segmentation is visible to the
programmer:
• provided as a convenience to organize logically programs (example:

data in one segment, code in another segment).
• must be aware of segment size limit.

• The OS maintains a segment table for each process. Each entry
contains:
• the starting physical addresses of that segment.
• the length of that segment (for protection).

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

5

Example of Segmentation

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

6

Implementing Segmentation

• Logical address consists of a two fields:
<segment-number, offset>,

• Segment table – maps two-dimensional physical
addresses; each table entry has:
• base – contains the starting physical address where the

segments reside in memory.
• limit – specifies the length of the segment.

• Segment-table base register (STBR) points to the
segment table’s location in memory.

• Segment-table length register (STLR) indicates number of
segments used by a program; segment-number s is legal
if s < STLR.

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

7

Logical address in segmentation

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

8

Address Translation Architecture

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

9

Logical-to-Physical Address Translation in segmentation

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

10

Protection in Segmentation

• Protection – with each entry in segment table associate:
• validation bit = 0 illegal segment
• read/write/execute privileges

• Protection bits associated with segments; code sharing
occurs at segment level.

• Since segments vary in length, memory allocation is a
dynamic storage-allocation problem.

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

11

Sharing in Segmentation Systems

• Segments are shared when entries in the segment tables
of 2 different processes point to the same physical
locations.

• Example: the same code of a text editor can be shared by
many users:
• Only one copy is kept in main memory.

• But each user would still need to have its own private data
segment.

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

12

Shared Segments Example

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

13

Simple segmentation/paging comparison

• Segmentation is visible to the programmer whereas paging is
transparent.

• Naturally supports protection/sharing.
• Supports logical organization of program into segments while

using different kinds of protection (example: execute-only for
code but read-write for data).

• Segments are variable-size; Pages are fixed-size.
• Segmentation requires more complicated hardware for address

translation than paging.
• Segmentation suffers from external fragmentation. Paging only

yields a small internal fragmentation.
• Combine Segmentation and Paging for suitable outcome

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

14

Questions

Computer Systems Engineering Department, QUEST, Nawabshah. 14CS

	Real Memory.pdf
	Simple paging.pdf
	Simple Segmentation.pdf

