

COMPUTER SYSTEMS & PROGRAMMING

Operating System Structures

Zuhaib A. Shaikh, Asst. Prof., CSE Deptt.,QUEST

Web: zuhaib-shaikh.neocities.org

Operating System Structures

- Operating System Objectives
- Operating System Services
- Common System Components
- System Calls and APIs
- System Programs
- OS design & evolution

OS Objectives

- Convenience: To provide a way to use system easily
- Efficiency: OS should manage all resources effectively
- Ability to evolve: OS should be able to evolve without disturbing whole system

A View of Operating System Services

user and other system programs					
	GUI	batch	command	line	
user interfaces					
system calls					
program I/O execution operation	ns file	- comr	nunication	resource allocation	accounting
error detection services				a	ection nd surity
operating system					
hardware					

Common System Components

- Process Management
- Main Memory Management
- File System Management
- I/O System Management
- Mass-Storage Management
- Networking
- Command Interpreter
- Protection and Security

Process Management

- A process is a program in execution. It is a unit of work within the system.
- Program is a passive entity, process is an active entity.
- The operating system is responsible for the following activities in connection with process management:
 - Creating and deleting both user and system processes.
 - Suspending and resuming processes.
 - Providing mechanisms for process synchronization.
 - Providing mechanisms for process communication.
 - Providing mechanisms for deadlock handling.

Process Management

- A Process needs resources to accomplish its task:
 - CPU, memory, I/O devices, files
 - Initialization data
- Process termination requires reclaim of any reusable resources.
- Typically a system has many processes, some user, some operating system running concurrently on one or more CPUs
 - Concurrency by multiplexing the CPUs among the processes/threads.

16ME

Main Memory Management

- All data in memory before and after processing.
- All instructions in memory in order to execute.
- Memory management determines what is in memory and how to handle it
 - Optimizing CPU utilization and computer response to users.
- Memory management activities:
 - Keeping track of which parts of memory are currently being used and by whom.
 - Deciding which processes (or parts thereof) and data to move into and out of memory.
 - Allocating and de-allocating memory space as needed.

File System Management

- A file is a collection of related information defined by its creator.
- Commonly, files represent programs and data.
- Files are usually organized into directories.
- OS activities include:
 - Creating and deleting files and directories.
 - Primitives to manipulate files and directories.
 - Mapping files onto secondary storage.
 - Backup files onto stable (non-volatile) storage media.

I/O System Management

- One purpose of OS is to hide peculiarities of hardware devices from the user.
- I/O subsystem is responsible for:
 - Memory management of I/O including:
 - buffering (storing data temporarily while it is being transferred)
 - caching (storing parts of data in faster storage for performance)
 - spooling (CPU track I/O devices for communication)
 - interrupts (I/O communication during execution of other process)
 - DMA (Direct Memory Access, to transfer data from one memory to another).
 - General device-driver interface.
 - Drivers for specific hardware devices.

Mass-Storage Management

- Usually disks used to store data that does not fit in main memory or data that must be kept permanently.
- Entire speed of computer operation depends on disk subsystem and its algorithms.
- OS activities:
 - Free-space management
 - Storage allocation
 - Disk scheduling
- Some storage need not be fast:
 - Storage includes optical storage, magnetic storage etc.
 - Varies between WORM (write-once, read-many-times) and RW (read-write)

Networking

- The processors in the system are connected through a communication network.
- Communication takes place using a protocol.
- A networked/distributed system provides user access to various system resources.
- Access to a shared resource allows:
 - Computation speed-up
 - Increased data availability
 - Enhanced reliability

Command Interpreter

- Command-Interpreter:
 - The program that reads and executes commands given to the operating system.
 - Examples of command-line interpreters are command (DOS), shell (UNIX).
 - In windows and in some other operating systems have GUI interface– WIMP (Windows, Icons, Menu, and Pointing device).

Protection and Security

- Protection any mechanism for controlling access of processes or users to both system and user resources.
- Security defense of the system against internal and external attacks, with huge range, including:
 - Denial-of-service
 - Worms
 - Viruses
 - Identity theft
 - Theft of service

Error Detection/Response

- Error Detection
 - internal and external hardware errors
 - memory error
 - device failure
- Software errors
 - arithmetic overflow
 - access forbidden memory locations
- Error Response
 - simply report error to the application
 - Retry the operation
 - Abort the application

Accounting

- Accounting keeps track of and records which users use how much and what kinds of computer resources.
- Accounting:
 - collect statistics on resource usage
 - monitor performance (e.g., response time)
 - used for system parameter tuning to improve performance
 - useful for anticipating future enhancements
 - used for billing users

System Calls and APIs

- Systems calls provide programming interface to the services provided by the OS.
- Typically written in a high-level language (C/C++).
- Mostly accessed by programs via a high-level Application Program Interface (API) rather than through direct system calls.
- Three most common APIs:
 - 1. Win32 API for Windows
 - 2. POSIX API for POSIX-based systems (including virtually all versions of UNIX, Linux, and Mac OS X)
 - 3. Java API for the Java Virtual Machine (JVM)

System Programs

- System programs provide a convenient environment for program development and execution.
- Most users' view of the operating system is defined by system programs, not the actual system calls.
- E.g.
 - File management & modification
 - Status information
 - Programming language support
 - Program loading and execution
 - Communications

Utility Programs

- Perform tasks related to the control and allocation of computer resources
- E.g.
 - Data-recovery utility
 - Virus Protection
 - Data Compression
 - Disk Scanner & Disk Cleanup
 - File Defragmentation
 - Disk Management

OS design & evolution

- Operating system should be modular in design
- Doing so, one component can change without interfering other components/system
- Ease of evolution of OS:
 - New fixes
 - Hardware change/upgrades
 - New services

Questions

